

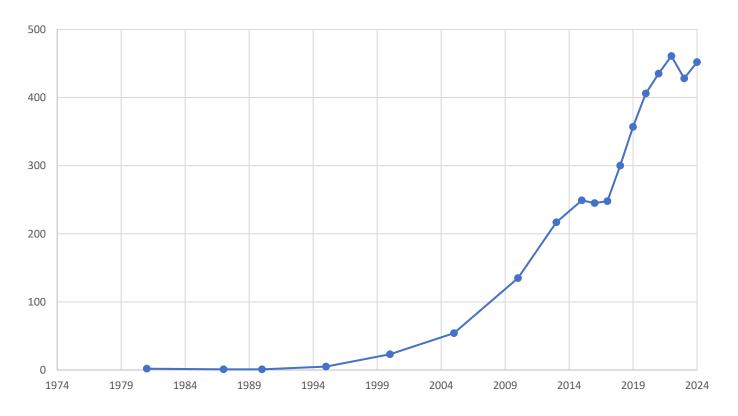
FORUM EUROPÉEN, CŒUR, EXERCICE & PRÉVENTION

Réadaptation cardiovasculaire : Tai Chi, Karaté, Aïkido

Philippe DUC

Groupe Hospitalier Paris Saint Joseph

Conflits d'intérêts


Aucun

Les activités physiques d'endurance proposées dans le cadre de la réadaptation cardiaque (RC) utilisent principalement l'entraînement sur cyclo-ergomètre ou sur tapis roulant avec des activités de gymnastique.

Autant cyclisme et course à pied en extérieur peuvent être passionnantes autant en salle celles-ci peuvent être ennuyeuses.

Pour l'activité physique est-ce que « mieux » existe en réadaptation cardiovasculaire ?

Tai Chi et publications (Pubmed)

www.forumeuropeen.com

Tai Chi?

Tai Chi et PA

4x60 min/week

- Tai chi : Yang Style
- Aérobique : montée escaliers, course à pied, marche rapide, cyclisme

	Study group, mean	(SD)	Mean between-group	
Outcome	Tai Chi group (n = 173)	Aerobic exercise group (n = 169)	difference in change (95% CI)	P value
Office SBP at baseline, mm Hg	132.4 (6.0)	132.6 (6.0)	NA	.74
Mean change in office SBP, mm Hg				
6 mo	-6.18 (8.00) ^a	-3.88 (7.30) ^a	-2.31 (-3.94 to -0.67)	.006
12 mo	-7.01 (10.12) ^a	- 4.61 (8.47) ^a	-2.40 (-4.39 to -0.41)	.02
Office DBP at baseline, mm Hg	84.2 (4.9)	84.5 (4.7)	NA	.58
Mean change in office DBP, mm Hg				
6 mo	-3.52 (4.23) ^a	-2.60 (4.53) ^a	-0.92 (-1.86 to 0.01)	.052
12 mo	-3.73 (6.21) ^a	-2.56 (6.54) ^a	-1.17 (-2.53 to 0.19)	.09

Li 2024

Tai Chi et syndrome coronaire aigu

Réadaptation en centre 4 semaines puis en ambulatoire Tai Chi (ambulatoire 8 sem,) versus réadaptation classique (3/sem pendant 12 sem.)

Indicators	TCCRP gr	roup(n = 14)	CERP group(<i>n</i> = 20)			
	Baseline	Week 12	Baseline	Week 12		
MDA (nmol/ml)	4.929 ± 1.052	3.901 ± 0.729**	4.230±0.990	3.933 ± 1.185		
SOD (U/ml)	43.594±9.888	53.704±11.577**	49.958±10.669	54.711±13.656*		
IL-10 (pg/ml)	13.168 ± 1.709	15.608 ± 2.970*	14.659 ± 2.852	16.256±3.830		
TNF-a (pg/ml)	77.622 ± 16.259	67.942±25.011	79.996±15.982	75.418±17.424		

^{*}p < 0.05, **p < 0.01, after intervention vs. before intervention; *p < 0.05, comparison between the 2 groups, TCCRP vs. CERP. MDA, malondialdehyde; SOD, superoxide dismutase; IL-10, interleukin 10: TNF-a. tumor necrosis factor.

Diminution du stress oxydatif et de l'inflammation avec le Tai Chi

Tai Chi 120 systematic reviews

EXCELLENT EVIDENCE OF BENEFIT	GOOD EVIDENCE OF BENEFIT	FAIR EVIDENCE OF BENEFIT WITH MIXED RESULTS	PRELIMINARY EVIDENCE OF BENEFIT	EVIDENCE OF NO DIRECT BENEFIT
		SPECIFIC CONDITIONS		
Preventing falls ⁶⁻¹⁹ • 14 systematic reviews Osteoarthritis ²⁵⁻³⁸ • 10 systematic reviews Parkinson disease ³⁹⁻⁵³ • 8 systematic reviews COPD rehabilitation ⁵⁴⁻⁵⁹ • 6 systematic reviews Improving cognitive capacity ⁶²⁻⁶⁸ • 5 systematic reviews	Depression ⁶⁹⁻⁷⁷ • 8 systematic reviews Cardiac rehabilitation ⁷⁸⁻⁸⁸ • 6 systematic reviews Stroke rehabilitation ⁸⁹⁻⁹⁵ • 5 systematic reviews Cognitive impairment and dementia ^{65,98} • 2 systematic reviews	Quality of life for cancer patients ¹⁰⁰⁻¹⁰⁷ • 7 systematic reviews Fibromyalgia ¹⁰⁸⁻¹¹⁴ • 4 systematic reviews Hypertension ¹¹⁷⁻¹²¹ • 4 systematic reviews Osteoporosis ¹²²⁻¹²⁶ • 3 systematic reviews	• 1 systematic review Anxiety ^{69,129} • 2 systematic reviews Low back pain ¹³⁰⁻¹³³ • 1 systematic review Postoperative arm mobility in breast cancer patients ¹³⁴ • 1 systematic review Multiple sclerosis ¹³⁵⁻¹³⁸ Schizophrenia ^{139,140} PTSD ^{141,142} Attention deficit disorder ^{143,144} After brain and spinal cord injury ^{146,147}	Diabetes (eg, HbA _{1c}) ¹⁴⁹⁻¹⁵³ • 4 systematic reviews Rheumatoid arthritis ¹⁵⁴⁻¹⁵⁷ • 3 systematic reviews Chronic heart failure ¹⁵⁸⁻¹⁶⁰ • 2 systematic reviews
	GENERA	L HEALTH AND FITNESS B	BENEFITS	
Balance, 161-173 • 10 systematic reviews Aerobic capacity 159,174-178 • 5 systematic reviews	Strength ^{159,178-182} • 2 systematic reviews	Well-being ^{69,183-185} • 4 systematic reviews Sleep ¹⁸⁶⁻¹⁹¹ • 2 systematic reviews	Flexibility ^{163,173,178,182} • 1 systematic review Immune capacity ¹⁹² Kidney function ^{121,193,194}	NA

COPD—chronic obstructive pulmonary disease, HbA_{1,-}—hemoglobin A_{1,-}, NA—not applicable, PTSD—posttraumatic stress disorder.

WWW.torumeuropeen.com Hus

Tai Chi et syndrome coronaire aigu

21 études, 1890 patients

A LVEF

		TCE		(Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Chen 2020	58.74	10.1	48	57.79	9.56	48	5.1%	0.95 [-2.98, 4.88]	+
Guo 2019	66.42	5.62	60	63.31	2.2	60	8.4%	3.11 [1.58, 4.64]	•
Kang 2021	73.7	6.98	30	65.9	11.39	30	4.2%	7.80 [3.02, 12.58]	+
Li 2018	65.5	12.8	30	63.26	11.56	30	3.0%	2.24 [-3.93, 8.41]	+
Liu 2017	55.3	6.4	40	45.8	6.5	40	6.5%	9.50 [6.67, 12.33]	+
Liu 2022	48.3	3.85	30	42	3.62	30	7.9%	6.30 [4.41, 8.19]	•
Lu 2022	66.32	5.17	48	59.66	4.98	48	7.7%	6.66 [4.63, 8.69]	*
Mao 2020	51.6	5	56	47.4	3.4	54	8.3%	4.20 [2.61, 5.79]	•
Wang 2018	43.1	8.1	75	40.3	7.6	75	7.0%	2.80 [0.29, 5.31]	-
Yu 2021	53.13	2.98	32	51.98	2.31	32	8.7%	1.15 [-0.16, 2.46]	+
Yu 2022	61.28	6.5	53	58.49	5.96	53	7.2%	2.79 [0.42, 5.16]	-
Zhang 2011	58.63	9.47	66	49.62	7.38	66	6.4%	9.01 [6.11, 11.91]	-
Zhang 2019	60.7	3.85	35	57.39	3.6	35	8.1%	3.31 [1.56, 5.06]	+
Zhou 2021	51.24	12.04	50	45.71	14.25	50	3.8%	5.53 [0.36, 10.70]	-
Zong 2022	58.98	5.53	50	54.51	4.68	50	7.7%	4.47 [2.46, 6.48]	*
Total (95% CI)			703			701	100.0%	4.58 [3.28, 5.88]	•
Heterogeneity: Tau ² :	4.63; C	hi ² = 66	.02, df	= 14 (P	< 0.000	01); [2=	79%		1 de de de
Test for overall effect	Z= 6.92	(P < 0.	00001)						-100 -50 0 50 10 TCE control

B LVDI

		TCE		C	ontrol			Mean Difference		- 1	Mean Differer	ice	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV	Random, 95	% CI	
Kang 2021	45.6	4.7	30	51.53	4.51	30	10.3%	-5.93 [-8.26, -3.60]			•		
Lu 2022	40.19	4.37	48	47.14	3.58	48	12.0%	-6.95 [-8.55, -5.35]			*		
Mao 2020	46.3	5.5	56	51.9	4.1	54	11.6%	-5.60 [-7.41, -3.79]			•		
Wang 2018	55.7	3.1	75	58.8	2.4	75	13.4%	-3.10 [-3.99, -2.21]					
Yu 2021	53.55	1.11	32	53.99	1.33	32	13.8%	-0.44 [-1.04, 0.16]			•		
Yu 2022	45.94	3.66	53	49.11	5.02	53	11.9%	-3.17 [-4.84, -1.50]			*		
Zhou 2021	43.94	1.1	50	45.71	1.27	50	13.9%	-1.77 [-2.24, -1.30]			-		
Zong 2022	48.21	2.29	50	53.04	2.96	50	13.2%	-4.83 [-5.87, -3.79]			*		
Total (95% CI)			394			392	100.0%	-3.83 [-5.27, -2.38]			•		
Heterogeneity: Tau2:	3.85; C	hi ² = 1	23.44.	df = 7 (F	< 0.0	0001);	r = 94%		100	1		-	401
Test for overall effect	Z = 5.20	(P < (0.0000	1)					-100	-50	TCE cont	50	10

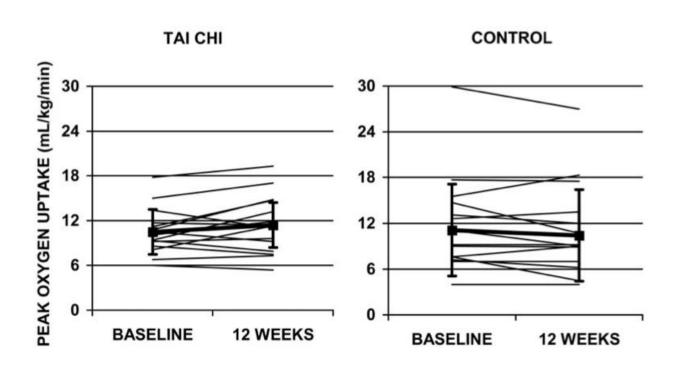
C LVES

		TCE		C	ontrol			Mean Difference		Mean Differer	nce			Wang 2018	1	75
Study or Subgroup	Mean		Total	Mean			Weight	IV, Random, 95% CI		, Random, 95			_	Zong 2022	2	50
Wang 2018 Yu 2022 Zhou 2021 Zong 2022 Total (95% CI)	38.2 30.15 35.84 34.12	1.01	53 50	32.02 36.12 38.88	0.53	75 53 50 50	22.5% 26.8% 24.8%	-1.90 [-2.67, -1.13] -1.87 [-3.53, -0.21] -0.28 [-0.60, 0.04] -4.76 [-5.86, -3.66] -2.17 [-4.10, -0.24]		-				Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect		
Heterogeneity: Tau ² : Test for overall effect				lf=3 (P	< 0.00	001); l²	= 96%	•	-100 -50	TCE cont	50	100	umeur	peen.	cor	n

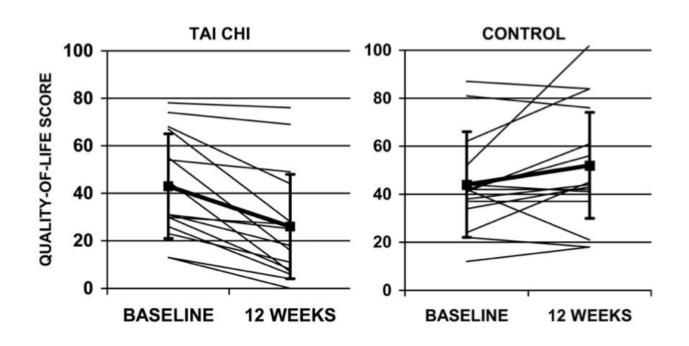
A 6MWT

		TCE		C	ontrol			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI
Cai 2022	369.57	11.64	45	354.29	12.52	45	10.6%	15.28 [10.29, 20.27]		-
Kang 2021	609.03	124.68	30	489.07	80.71	30	8.5%	119.96 [66.81, 173.11]		
Li 2021	552.97	41.05	29	508.29	31.22	28	10.3%	44.68 [25.79, 63.57]		
Liu 2022	490	10	30	362	12.23	30	10.6%	128.00 [122.35, 133.65]		
Lu 2022	379.55	40.11	48	326.49	50.03	48	10.3%	53.06 [34.92, 71.20]		
Wang 2018	417.3	23.4	75	358.2	18.5	75	10.5%	59.10 [52.35, 65.85]		
Yu 2021	425.53	99.35	32	388.15	86.35	32	9.0%	37.38 [-8.23, 82.99]		+
Yu 2022	386.45	60.47	53	355.13	55.16	53	10.2%	31.32 [9.28, 53.36]		-
Zhang 2011	654	89	66	516	93	66	9.8%	138.00 [106.94, 169.06]		
Zhou 2021	498.52	47.58	50	421.65	40.65	50	10.3%	76.87 [59.52, 94.22]		_
Total (95% CI)			458			457	100.0%	69.60 [34.59, 104.60]		
Heterogeneity: Tau ² =	3011.75	Chi2 = 9	02.98.	df = 9 (P	< 0.000	01): 2=	99%			-50 0 50
Test for overall effect									-100	-50 0 50 TCE control

B VO2


		TCE		C	ontrol			Mean Difference		N	lean Differei	ice	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV,	Random, 95	% CI	
Cai 2022	24.69	4.87	45	21.78	4.14	45	18.9%	2.91 [1.04, 4.78]					
Li 2018	29.2	2.12	30	24.7	1.68	30	21.1%	4.50 [3.53, 5.47]					
Rosane 2015	24.6	5.2	31	19.4	4.4	30	17.2%	5.20 [2.79, 7.61]			•		
Yang 2021	16.78	2.61	69	14.56	2.53	69	21.3%	2.22 [1.36, 3.08]			•		
Zong 2022	22.17	2.48	50	15.12	1.37	50	21.5%	7.05 [6.26, 7.84]					
Total (95% CI)			225			224	100.0%	4.38 [2.25, 6.51]			•		
Heterogeneity: Tau ² : Test for overall effect					< 0.00	001); l²	= 94%		-100	-50	TCE cont	50	100

MACE


	TCE		Contr	rol		Risk Ratio		Ris	k Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fi	xed, 95% CI	
Guo 2019	2	60	10	60	16.1%	0.20 [0.05, 0.87]			-	
Liu 2022	12	30	28	30	45.2%	0.43 [0.27, 0.67]		-	·	
Lu 2022	2	48	9	48	14.5%	0.22 [0.05, 0.98]		-	\dashv	
Wang 2018	1	75	7	75	11.3%	0.14 [0.02, 1.13]	_	•	+	
Zong 2022	2	50	8	50	12.9%	0.25 [0.06, 1.12]			+	
Total (95% CI)		263		263	100.0%	0.31 [0.20, 0.47]		•		
Total events	19		62							
Heterogeneity: Chi ² =	3.24, df=	4 (P =	0.52); 12:	= 0%			-		+ +	400
Test for overall effect	Z = 5.41	(P < 0.0	00001)				0.01	0.1 TC	1 10 E control	100

Zhang Frontiers in Card Med 2023

Tai chi et insuffisance cardiaque

Tai chi et insuffisance cardiaque

Tai Chi et insuffisance cardiaque

Outromsomeonto	No of DCTs	No of notionts	Statistical	Effect sizes	
Outcomes measurements	No. of RC1s	No. of patients	method	MD (95% CI)	p value
A. (Tai Chi and Qigong Practi	ce				
plus RM) vs. (RM)					
NT-proBNP, pg/mL	6	350	MD, REM	-232.05 (-578.87 to 114.78)	0.19
VO _{2AT} , ml/kg/min	2	115	MD, REM	1.43 (0.59 to 2.28)	0.0009
LVEDd, mm	4	397	MD, REM	-3.00 (-5.09 to -0.91)	0.005
Depression	6	462	SMD, REM	−0.64 (−1.03 to −0.25)	0.001
Anxiety	2	163	SMD, FEM	-1.00 (-2.41 to 0.41)	0.17
Mood state	2	160	SMD, REM	-0.08 (-1.47 to 1.31)	0.91
Fatigue	2	125	SMD, REM	0.01 (-1.07 to 1.09)	0.98
Norepinephrine	2	130	MD, FEM	0.51 (-0.71 to 1.72)	0.41
SF-36-bodily pain	2	159	MD, REM	5.84 (0.62 to 11.06)	0.03
SF-36-mental health	2	159	MD, REM	6.55 (1.78 to 11.32)	0.007
SF-36-physical function	2	159	MD, FEM	6.73 (4.05 to 9.42)	< 0.00001
SF-36-role emotional	2	159	MD, FEM	5.60 (2.78 to 8.43)	< 0.0001
SF-36-role physical	2	159	MD, REM	9.87 (0.52 to 19.22)	0.04
SF-36-social function	2	159	MD, FEM	6.78 (4.09 to 9.47)	< 0.00001
SF-36-vitality	2	159	MD, REM	8.28 (0.77 to 15.79)	0.03
Hospitalizations per capita	3	322	MD, FEM	−0.82 (−0.95 to −0.69)	< 0.00001
Hospitalization cost per capita	3	322	MD, FEM	-1.60 (-1.85 to -1.36)	< 0.00001

Tai Chi et insuffisance cardiaque

6 min Walk test

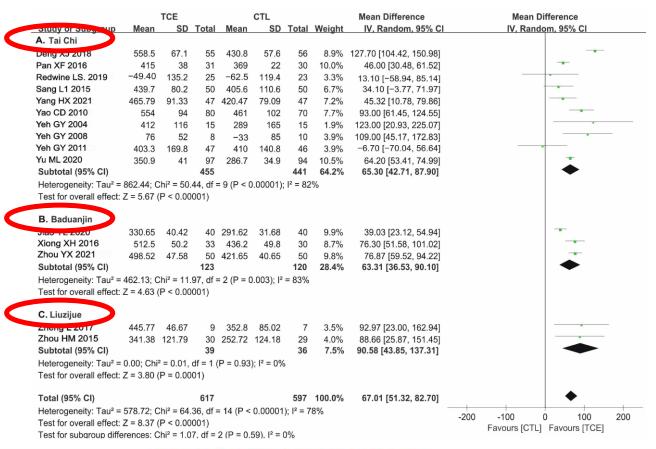
Total (95% CI)

Heterogeneity: Tau² = 2311.38; Chi² = 432.15, df = 28 (P < 0.00001); I² = 94%

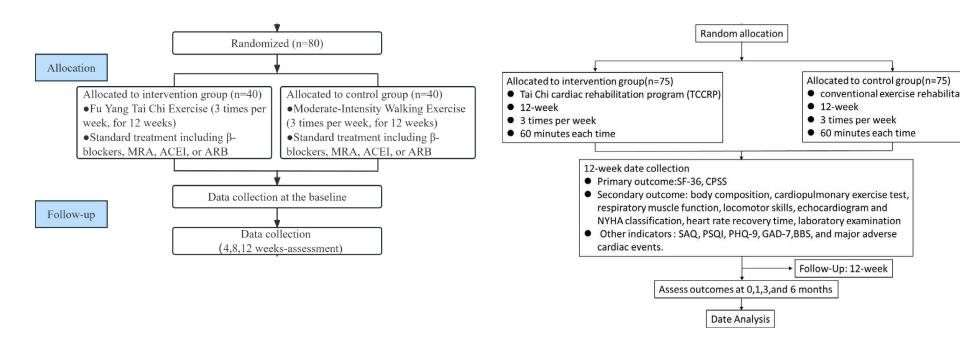
Test for overall effect: Z = 7.38 (P < 0.00001)

Test for overall effect: Z = 7.38 (P < 0.00001)

NT-proBNP



Minnesota Living with Heart Failure



Quelle forme de Tai Chi?

6 min walk test

Etude randomisées Tai Chi en réadaptation cardiaque

Jiao, Frontiers CV Medecine 2023, Wen Guanhzhou, Chine

Ma, BMJ 2020, Beijing, Chine

Introduction

Karaté : dépense physique, dynamique > Tai Chi, motivation

Nous avons émis l'hypothèse que l'entraînement au karaté serait au moins aussi efficace que les programmes conventionnels (vélo, tapis, gymnastique).

L'objectif principal était la consommation maximale d'O2 lors d'un test d'exercice cardio-pulmonaire limité par les symptômes à la fin du programme de RC.

Le karaté est-il une méthode de réadaptation sûre et efficace dans l'insuffisance cardiaque avec fraction d'éjection basse? L'essai KAREAD

Philippe Duc, Marie-Christine Iliou, Bich-Vân Duc, Francois Ledru**,, Gilles Chatellier*, Aurelia Lamar Tanguy**, Nicolae Dumitrescu, Maxime Fumery, Annabelle Jagu***, Philippe Garcon***, Yara Antakly Hanon***, Yoann Moeuf***, Philippe Durand***, Brigitte Standish***, Michel Komajda***, Romain Cador***

Service De Réadaptation Cardiovasculaire, Hôpital Saint Joseph, Paris - Paris (France), *Cellule De Recherche Clinique, Hôpital Saint Joseph, Paris - Paris (France), **Service De Réadaptation Cardiovasculaire, Hôpital Corentin-Celton, Issy Les Moulineaux - Paris (France), ***Service De Cardiologie, Hôpital Saint Joseph, Paris - Paris (France)

Méthode

Essai de non-infériorité randomisé en simple aveugle dans deux centres (Saint Joseph à Paris et Corentin Celton)

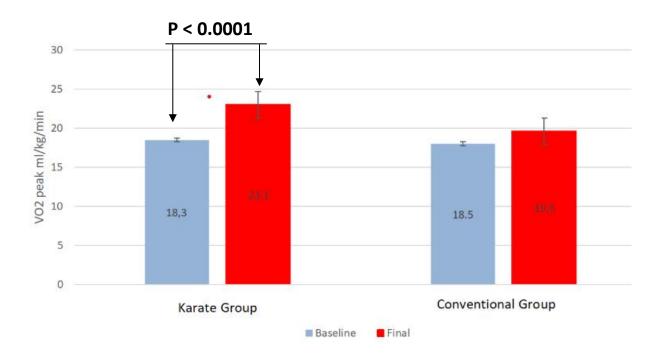
Critères d'inclusion : Homme ou Femme ≥ 18 ans, insuffisance cardiaque, altération de la fraction d'éjection avec FEVG ≤ 40 %

Les patients ont été entraînés pendant des séances d'une heure par jour, 5 jours par semaine, en utilisant soit en karaté (déplacements d'avant en arrière - latéraux, coups de pied et coups de poing, sans combat), soit en entraînement physique conventionnel (tapis, vélos au SV1 et gymnastique).

Les patients ont eu VO2 et ont remplis des questionnaires sur la qualité de vie : échelle visuelle analogique (EVA), Kansas City Cardiomyopathy Questionnaire KCCQ-11, et le questionnaire de stress, anxiété et dépression (DASS-11) en début et en fin du programme de RC.

Méthode

Karaté et Réadaptation cardiaque (Karéad)


Mai 2022

Baseline characteristics

Characteristic	Global population (n=112)	Karate group (n=58)	Conventional group (n=54)	
Age (years)	62.3 ± 12.2	60.6 ± 11.4	64.1 ± 12.9	
Male sex (n, %)	83 (74.1)	43 (74.1)	40 (74.1)	
ВМІ	25.2 ± 6.6	25.4 ± 6.6	24.9 ± 6.6	
Aetiology of HF (n, %)				
DCM	46 (41.1)	25 (43.1)	21 (38.9)	
ICM	54 (48.2)	30 (51.7)	24 (44.4)	
Others	12 (10.7)	3 (5.2)	9 (16.6)	
NYHA class	24 (42 7)	40 (00.4)	0 (4.4.0)	
<u>.</u>	21 (18.7)	13 (22.4)	8 (14.8)	
II	55 (49.1)	25 (43.1)	30 (55.6)	
III	36 (32.1)	20 (34.4)	16 (29.6)	
Sinus rhythm (n,%)	88 (78.6)	50 (86.2)	38 (70.4)	
LVEF (%)	30.9 ± 6.9	31.0 ± 6.3	30.8 ± 7.5	
LVEDV (ml)	161.6 ± 61.2	160.9 ± 65.1	162.5 ± 56.8	
NT-BNP (pg/ml)	1047.0 [546.0;2075.0]	937.5 [396.5;1767.0]	1135.0 [396.5;1767.0]	
Treatments (n,%)				
Betablockers	103 (92.0)	55 (94.8)	48 (88.9)	
ACEI/ARB	60 (53.6)	30 (51.7)	30 (55.5)	
Sacubitril/Valsartan	42 (37.5)	16 (27.6)	26 (48.1)	
MRA	16 (14.3)	7 (12.1)	9 (16.7)	
Loop diuretics	71 (63.4)	35 (60.3)	36 (66.7)	
ICD	23 (20.5)	11 (19.0)	12 (22.2)	

Résultat

- Moyenne de 36 séances.
- Le pic de VO2 était non inférieur dans le groupe karaté par rapport au groupe conventionnel (limite de non infériorité : 1 ml/kg/min, p<0.0001).
- Nous avons donc testé comme prévu dans le plan statistique l'hypothèse de supériorité.

Résultats suite

	Inclu	ısion	End of CR				
	Karate G	Conventional	Karate	Conventional	р		
VAS	4 [2;5]	6 [5;8]	9 [8;10]	6 [5;8]	<0.001		
KCCQ12	66.9 ± 21.5	67.7 ± 20.2	83.0 ± 18.1	76.4 ± 20.8	0.008		
DASS21 stress	12 [6;18]	6 [4;14]	2 [0;10]	4 [0;10]	0.64		
DASS21 anxiety	8 [4;14]	6 [2;12]	4 [0;6]	6 [0;10]	0.37		
DASS21 depression	10 [2;18]	16 [2;13]	2 [0;10]	4 [0;10]	0.11		

visual analogue scale ; KCCQ12: Kansas City Cardiomyopathy Questionnaire ; DASS21 : Depression and Anxiety Stress Scale

Aucun effet indésirable lié à l'entraînement au karaté n'a été observé.

Conclusion

Le karaté par rapport à la réadaptation « classique « vélo, tapis, gymnastique permet une amélioration significativement supérieure du VO2 (p< 0.001).

Karaté:

- · sans danger.
- Alternative en réadaptation

Enseignants de karatés proches des centres de réadaptation :

- organisation différente de la réadaptation : karaté non pas en supplément de mais remplace machine et gym
- diffusion possible dans les centres de réadaptation : 5 000 clubs en France

EVALUATION DE L'AÏKIDO EN READAPTATION CARDIOVASCULAIRE: AIKIDOREAB

Critère de jugement principal

Le critère de jugement principal correspond à la comparaison du pic de VO₂ mesuré en ml/kg/min lors d'une épreuve d'effort avec mesures des échanges gazeux entre le groupe de patients bénéficiant d'un cycle de réadaptation cardiovasculaire classique par rapport au groupe de patients bénéficiant de séances d'Aïkido.

Critères de jugement secondaires

- *Echographie :* avec strain longitudinal global, indice de travail cardiaque gauche, early diastolic filling ratio (%), résistance vasculaire systémique (dyns/s/cm³) cf annexe 6
- Physioflow (uniquement GHPSJ) sur un sous-groupe de patients. Au repos, au max de l'effort à 1 et 3 min de récupération, Volume d'éjection systolique (VES), Débit cardiaque (l/min), Indice de contractilité, Indice de travail cardiaque gauche, Early diastolic filling ratio (%), Résistances vasculaires systémiques (dyns/s/cm³)
- Holter ECG: Variabilité sinusale, FC moyenne sur les 24h, Nombre d'extrasystoles ventriculaires
- Profil tensionnel
- la qualité de vie
- l'état émotionnel
- la satisfaction des patients
- l'adhérence observance des patients aux séances

EVALUATION DE L'AÏKIDO EN READAPTATION CARDIOVASCULAIRE : AIKIDOREAB

Début

> 2026

Deux centres:

- > Groupe Hospitalier Paris Saint Joseph
- > Et ?

pduc@ghpsj.fr