

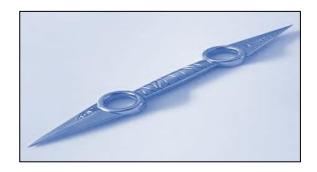
FORUM EUROPÉEN, CŒUR, EXERCICE & PRÉVENTION

L'urgence cardiaque

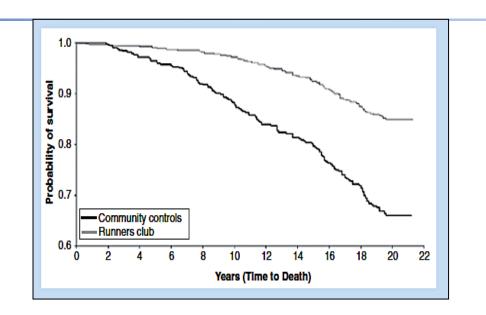
chez le sportif de haut niveau

François Carré

CHU Rennes- Université Rennes 1- INSERM U1099


Conflits d'intérêts

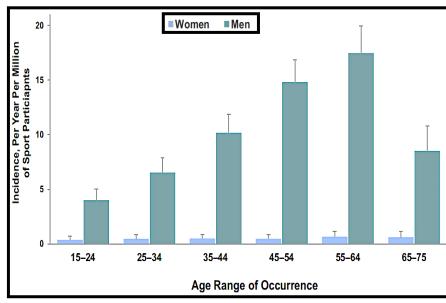
Nom de la Société	Type d'affiliation	Période
Amgen	Conférences	2020-2023
Viatris Mylan	Conférence	2021
Novartis	Conférences	2019-2022
Menarini	Conférences	2019-2022
Chiesi	Conférence	2021
Lilly	Conférence	2021
Vayer	Conférence	2020
Recordati-Bouchara	Conférences	2021
BMS	Conférences	2019-2022

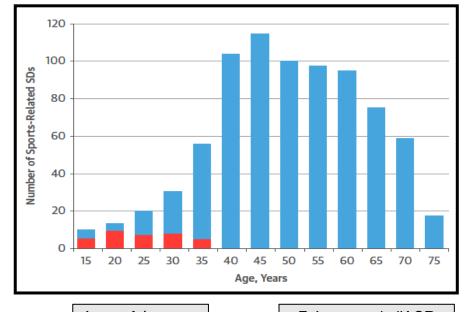


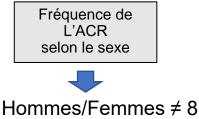
Le paradoxe du sport

Vu ses bienfaits une APS modérée est toujours recommandée même en cas de maladie chronique

Mais l'APS intense peut favoriser la survenue d'un accident cardiovasculaire qui **révèle** une pathologie cardiaque


- INFARCTUS DU MYOCARDE
- TROUBLES DU RYTHME
- MORT SUBITE


6,5/100 000


Chevalier L et al Eur J Cardiovasc Prev 2010

Arrêt cardiorespiratoire lié à l'effort, qui est concerné ?

Age et fréquence de l'ACR 25% ≤ 35 ans 75% > 35 ans Fréquence de l'ACR compétition/ loisir

Loisir > compétition

Marijon E et al. Circulation. 2011;124:672-681

Au total

L'INCIDENCE DE l'ACR LIÉ AU SPORT EST TRÈS FAIBLE

Harmon KG et al. Circulation. 2015; 132: 10–19 1/50 - 100 000 < 35 y

1/25-50 000 > 35 Y

Chevalier L et al. Eur J Cardiovasc Prev Rehabil. 2009;16:365-70 Marijon E et al. Circulation. 2011;124:672-681

France 800-1000/an

L'arrêt cardiorespiratoire lié
à l'effort touche surtout
l'homme de 45-50 ans qui
pratique un sport de loisir

Arrêt cardiorespiratoire chez les sportifs de haut niveau

Etude prospective

1 juillet 2014 au 30 juin 2018

USA

331 ACD

173 décédés	Activité lors de l'ACR	Origine ethnique
158 survivants (48%)	74 % per-effort	49,5 % Caucasiens
Hommes 84 %	4,2 % 1h post-effort	32,9% Afro-Américains
Femmes 16%	18% hors effort 12% repos 6% sommeil	6,3% Latin-hispanique
Age 16,7 ans (11-29 ans)	1,3% ?	1,9 % Asiatique

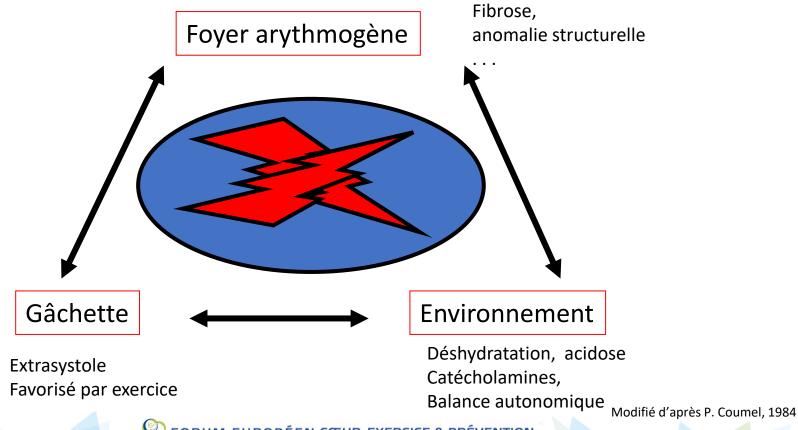
Peterson DF, et al. Br J Sports Med 2020;0:1–9. doi:10.1136/bjsports-2020-102666

Arrêt cardiorespiratoire selon les sports

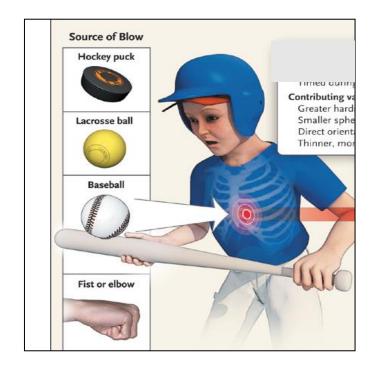
	Sudden cardiac arrest with survival (n=158)	Sudden cardiac death (n=173)	Total (n=331)
	N (%)	N (%)	N (%)
Basketball	43 (27.2)	52 (30.1)	95 (28.7)
Football	34 (21.5)	50 (28.9)	84 (25.4)
Soccer	22 (13.9)	17 (9.8)	39 (11.8)
Track/cross country	17 (10.8)	14 (8.1)	31 (9.4)
Baseball	14 (8.9)	7 (4.0)	21 (6.3)
Swimming	4 (2.5)	7 (4.0)	11 (3.3)
Lacrosse	6 (3.8)	3 (1.7)	9 (2.7)
Ice hockey	4 (2.5)	4 (2.3)	8 (2.4)
Wrestling	3 (1.9)	4 (2.3)	7 (2.1)
Softball	2 (1.3)	4 (2.3)	6 (1.8)
Volleyball	3 (1.9)	2 (1.2)	5 (1.5)
Dance	1 (0.6)	3 (1.7)	4 (1.2)
Tennis	1 (0.6)	3 (1.7)	4 (1.2)
Cheerleading	2 (1.3)	1 (0.6)	3 (0.9)
Boxing	0 (0)	1 (0.6)	1 (0.3)
Crew	1 (0.6)	0 (0)	1 (0.3)
Freestyle skiing	0 (0)	1 (0.6)	1 (0.3)
Flag football	1 (0.6)	0 (0)	1 (0.3)

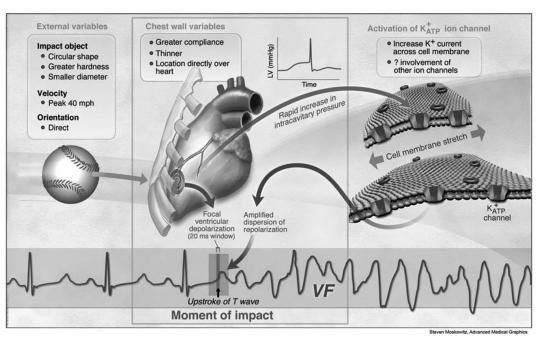
Peterson DF, et al. Br J Sports Med 2020;0:1–9. doi:10.1136/bjsports-2020-102666

Etiologies des arrêts cardiorespiratoires selon l'âge


	Collège	Lycée	Université College/semiprofessional/
	Middle school (n=29)	High school (n=128)	professional (n=34)
	N (%)	N (%)	N (%)
Hypertrophic cardiomyopathy	6 (20.7)	26 (20.3)	9 (26.5)
Idiopathic left ventricular hypertrophy	3 (10.3)	15 (11.7)	6 (17.6)
Coronary artery anomalies	8 (27.6)	15 (11.7)	1 (2.9)
Autopsy negative sudden unexplained death	3 (10.3)	13 (10.2)	4 (11.8)
Arrhythmogenic cardiomyopathy	0 (0)	7 (5.5)	3 (8.8)
Long QT syndrome	0 (0)	8 (6.3)	1 (2.9)
Commotio cordis	2 (6.9)	5 (3.9)	3 (8.8)
Wolff-Parkinson-White	0 (0)	7 (5.5)	2 (5.9)
Myocarditis	1 (3.4)	6 (4.7)	0 (0)
Aortic dissection/rupture	0 (0)	6 (4.7)	1 (2.9)
Dilated cardiomyopathy	1 (3.4)	1 (0.8)	3 (8.8)
Valve disorder	1 (3.4)	4 (3.1)	0 (0)
Coronary atherosclerosis	0 (0)	2 (1.6)	1 (2.9)
Complications of a congenital heart defect	2 (6.9)	2 (1.6)	0 (0)
Catecholaminergic polymorphic ventricular tachycardia	1 (3.4)	2 (1.6)	0 (0)
Hypertensive heart disease	0 (0)	1 (0.8)	0 (0)
Left ventricular non-compaction	0 (0)	2 (1.6)	0 (0)
Restrictive cardiomyopathy	1 (3.4)	0 (0)	0 (0)
Other	0 (0)	6 (4.7)	0 (0)

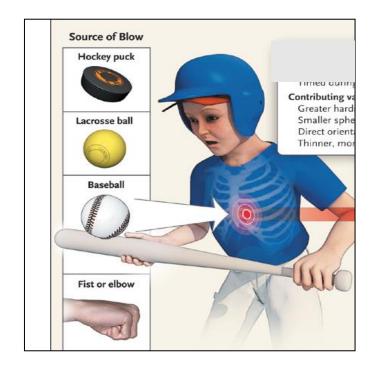
Etiologies des arrêts cardiorespiratoires selon l'âge

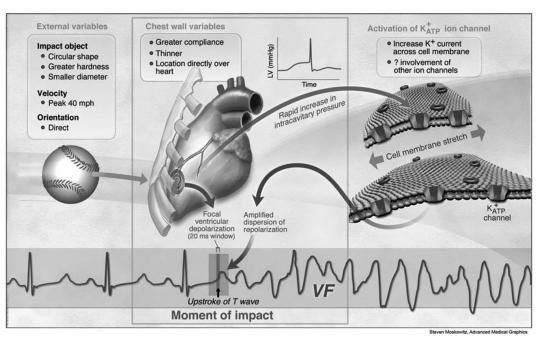

	Collège Middle school (n=29)	Lycée High school (n=128)	Université College/semiprofessional/ professional (n=34)
	N (%)	N (%)	N (%)
Hypertrophic cardiomyopathy	6 (20.7)	26 (20.3)	9 (26.5)
Idiopathic left ventricular hypertrophy	3 (10.3)	15 (11.7)	6 (17.6)
Coronary artery anomalies	8 (27.6)	15 (11.7)	1 (2.9)
Autopsy negative sudden unexplained death	3 (10.3)	13 (10.2)	4 (11.8)
Arrhythmogenic cardiomyopathy	0 (0)	7 (5.5)	3 (8.8)
Long QT syndrome	0 (0)	8 (6.3)	1 (2.9)
Commotio cordis	2 (6.9)	5 (3.9)	3 (8.8)
Wolff-Parkinson-White	0 (0)	7 (5.5)	2 (5.9)
Myocarditis	1 (3.4)	6 (4.7)	0 (0)
Aortic dissection/rupture	0 (0)	6 (4.7)	1 (2.9)
Dilated cardiomyopathy	1 (3.4)	1 (0.8)	3 (8.8)
Valve disorder	1 (3.4)	4 (3.1)	0 (0)
Coronary atherosclerosis	0 (0)	2 (1.6)	1 (2.9)
Complications of a congenital heart defect	2 (6.9)	2 (1.6)	0 (0)
Catecholaminergic polymorphic ventricular tachycardia	1 (3.4)	2 (1.6)	0 (0)
Hypertensive heart disease	0 (0)	1 (0.8)	0 (0)
Left ventricular non-compaction	0 (0)	2 (1.6)	0 (0)
Restrictive cardiomyopathy	1 (3.4)	0 (0)	0 (0)
Other	0 (0)	6 (4.7)	0 (0)


Mécanismes de l'arrêt cardiorespiratoire

Arythmie ventriculaire cause la plus fréquente du décès

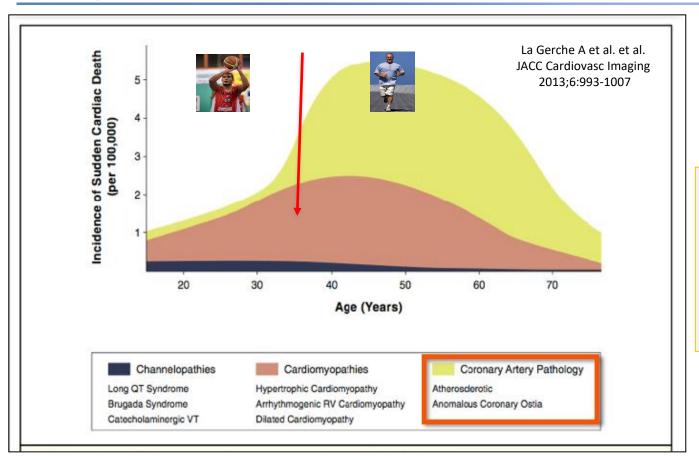
Commotio cordis




Maron B and Estes M N Engl J Med 2010;362:917-27.

Link MS . Cong Heart Dis. 2017;12:597-99.

Commotio cordis

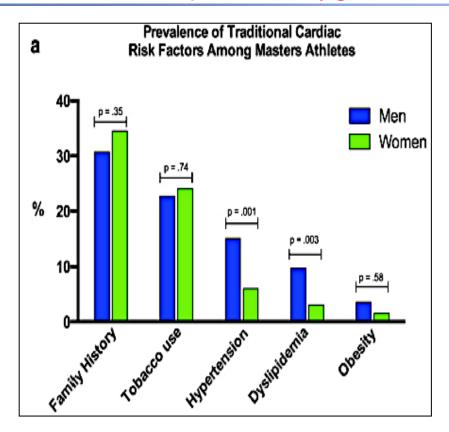


Maron B and Estes M N Engl J Med 2010;362:917-27.

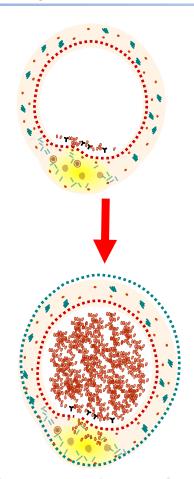
Link MS . Cong Heart Dis. 2017;12:597-99.

Etiologies des arrêts cardiorespiratoires selon l'âge

40 -50% cas ??


HVG idiopathique

Syndrome arythmique de MS


Sportif de haut niveau ne veut pas dire hygiène de vie irréprochable

Age > 35ans Risques CV

Shapero S et al. Sports Medicine - Open 2016; 2:29

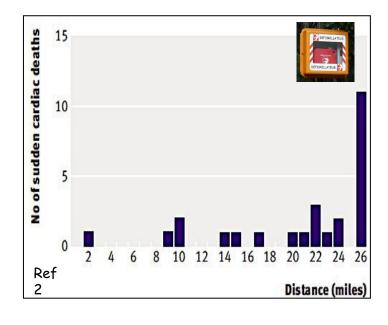


Et le dopage

Effet aigu : possible

Effet chronique ???

Le dopage peut jouer un rôle mais il semble minime



Importance des gestes de secours

TOUJOURS

APPELER MASSER DEFIBRILLER SECOURS SPECIALISÉS **HOSPITALISATION**

PLAN DE SECOURS

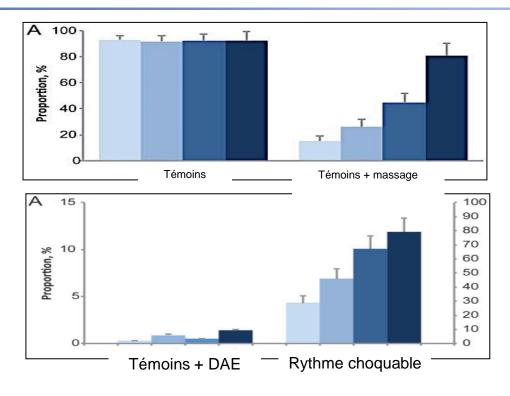
Matthews SC et al. Am J Sports Med 2012 40: 1495 Redelmeier DA et al. BMJ 2007;335:1275-7 Kim JM et al.N Engl J Med 2012;366:130-40.

Réactivité du monde du sport, les progrès

2003

2015

2021



Preuves de l'efficacité

Marijon E et al. Eur Heart J 2013; 34: 3632–3640

Conclusions

LES ACCIDENTS CARDIOVASCULAIRES GRAVES LIÉS AU SPORT SONT EXCEPTIONNELS

- ACR lié au sport sujets masculins sont les plus concernés
- Cause principale d' ACR varie selon l'âge : artères coronaires anormales (28%) collégiens et cardiomyopathies (47%)après
- Basket-ball et football américain sont les sports les plus concernés
- Le basketteur afro-américain est le plus concerné avec un risque moyen d'ACR x 21,1 chez joueurs de ligue 1 de la NCAA (1: 2087 AY)
- Dans 71% des cas d'ACR chez les athlètes de haut niveau la cause peut être associée à un ECG anormal.

Impacts potentiels sur la pratique clinique

Prévention primaire

Stratégies efficaces de dépistage CV des causes les plus fréquentes d'ACR chez les athlètes ?

Prévention secondaire plans d'urgence, formation gestes secours et accès faciles aux défibrillateurs

